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Design of Fiber Reinforced Foam Sandwich Panels for 
Large Ares V Structural Applications 

 
Brett A. Bednarcyk, Steven M. Arnold, and Dale A. Hopkins 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
The preliminary design of three major structural components within NASA’s Ares V heavy lift vehicle using a 

novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, 
and core intertank are designed for minimum mass using this panel concept, which consists of integral composite 
webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in 
conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include 
a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the 
panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the 
second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after 
completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is 
demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the 
panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to 
the effects of local buckling, which are not considered in the effective core property approach.  

I. Introduction 
NASA’s Ares V heavy lift vehicle is currently being designed to deliver cargo to low Earth orbit and the Moon 

as part of the United States’ next-generation space fleet. As shown in Figure 1, Ares V consists of two vertically 
stacked stages (core stage and Earth departure stage), along with two 5.5 stage solid rocket boosters (SRBs). As is 
typical with launch vehicles, structural mass is a dominant design driver for Ares V. Thus, NASA is currently 
exploring the use of fiber reinforced polymer composites for structural applications within Ares V. To support this 
effort, in 2008 NASA began the Advanced Composite Technologies (ACT) project under the Exploration 
Technologies Development Program, with the goal of advancing composite materials and structures technologies for 
insertion into Ares V. Three major structural components, as indicated in Figure 2, were targeted by the ACT project 
for infusion of composite technologies to reduce structural mass: the payload shroud, the interstage, and the core 
intertank. The 10 m diameter, 23.7 m long payload shroud sits atop the Ares V vehicle to protect the payload (the 
Altair lunar lander in Figs. 1 and 2) during ascent. The 10 m diameter, 15.5 m long interstage connects the Earth 
departure stage to the core stage. Finally, the 10 m diameter, 8.4 m long core intertank is located between the liquid 
oxygen and liquid hydrogen tanks within the core stage. The core intertank also contains the forward connection 
points for the SRBs and is thus very highly loaded. The baseline configuration, derived from the Space Shuttle 
External Tank design, also includes a thrust beam, which traverses the intertank and connects the two SRBs. 

A number of composite panel concepts were selected by the ACT project to be compared for each of the three 
Ares V components based on preliminary designs. The panel concepts being considered are uniaxial stiffened, hat 
stiffened, iso/orthogrid, corrugated sandwich, aluminum honeycomb sandwich, foam core sandwich, PRSEUS, and 
fiber reinforced foam (FRF) core sandwich. This paper presents the preliminary design of the Ares V shroud, 
interstage, and intertank using the FRF core sandwich panel concept. 

II. Fiber Reinforced Foam (FRF) Sandwich Panels 
Fiber reinforced foam sandwich panels are formed by winding fibers around sections of stiff foam, stacking the 

wound foam section, adding dry facesheet preforms, and infusing resin into the panel. The dry panel preform can 
also be stitched prior to resin infusion to improve the damage tolerance of the finished panel. The resulting panels, 
as shown in Figure 3, include facesheets and integral webs. The foam can be removed after the resin has been 
infused and cured, and panels with bidirectional integral webs can be manufactured as well. The FRF core panels 
considered herein are manufactured by WebCore Technologies (Refs. 1 and 2), who provided the core material 
properties employed in the design, via a patented process. 
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Figure 1.—Comparison of NASA’s Ares V heavy lift vehicle with other NASA launch vehicles. 
 

 
 

Figure 2.—Ares V major components. 
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III. Preliminary Design Procedure 
The payload shroud, interstage, and core intertank were designed using NASTRAN (Ref. 3) shell and beam 

loads finite element models (FEMs) in conjunction with the HyperSizer structural sizing software (Ref. 4). In this 
procedure, the shape of the structure and the load cases are defined in the FEM, the solution of which provides shell 
and beam element loads. These loads are then read by HyperSizer, wherein the shell and beam elements are 
allocated to a user specified number of structural components. A component comprised of shell elements typically 
represents a particular panel within HyperSizer. The element loads for every load case from the FEM solution are 
statistically processed to arrive at design-to loads for each panel and beam component for both strength and 
buckling. For each panel and beam component, the user specifies candidate designs by selecting the panel type (i.e., 
hat stiffened or honeycomb sandwich), the upper and lower limits of the local geometric parameters (i.e., panel 
height, facesheet thickness, web spacing), the number of permutations to consider for each geometric parameter, and 
the candidate materials for each panel subcomponent (i.e., facesheet materials, foam or honeycomb core materials, 
web materials). HyperSizer then uses internal analytical localization techniques to determine the design-to stress and 
strain fields throughout the panel or beam based on the panel level design-to loads. Using these local design-to fields 
(as well as the panel design-to loads), the code then evaluates the panel or beam candidate designs based on the 
candidate material properties (stress/strain allowables and stiffnesses). HyperSizer considers a wide array of failure 
modes for strength and stability such as local buckling of webs and facesheets, panel buckling, composite strength 
failure (i.e., max strain, Tsai-Wu, LaRC03), crippling, facesheet wrinkling, honeycomb intracell dimpling, shear 
crimping, core crushing, and core shear failure. For every potential failure mode for each candidate panel or beam 
and for all specified load cases, HyperSizer determines a margin of safety. The lightest candidate beam or panel for 
which all margins of safety are positive is then the optimal design (in terms of mass), and this candidate is selected. 
The lightest candidate is found by first ranking all candidates based on mass, and then finding the first (lightest) 
candidate that provides all positive margins. This procedure is performed for all panel and beam components 
throughout the structure to arrive at a new optimized global design given the loads provided by the FEM solution.  
However, now that a new design has been found that is different than that used in the FEM to determine the loads, 
the FEM must be updated to reflect the new design and new loads determined. The new loads must then be provided 
to HyperSizer to determine a new optimized design, and the procedure repeats iteratively until convergence has been 
achieved. A software product called HyperFEA (Ref. 5), which automates this procedure of iterating between 
NASTRAN and HyperSizer, was used in the present investigation. 

HyperSizer does not currently include a family of stiffened panels capable of fully sizing the FRF core panel 
concept. That is, the software presently does not allow the sizing and material selection of a FRF panel facesheet, 
web, web spacing, panel thickness, and foam. Two methods were thus used as a workaround. The first is to simply 
model the FRF core as an equivalent material, with effective (smeared) material properties, using the standard 
HyperSizer sandwich panel family. This method is analogous to the standard HyperSizer method for sizing 
honeycomb sandwich panels. The facesheet materials are arbitrary, while the core material must be a “honeycomb” 
material within HyperSizer. These “honeycomb” materials have effective through-thickness normal and shear 
stiffness and strength, but no in-plane stiffness or strength. As such, honeycomb materials do not contribute to the 
in-plane stiffness of the panel, rather, all panel in-plane loads are carried by the facesheets. Effective “honeycomb” 
material properties for standard FRF cores were provided by WebCore (Refs. 6 and 7) for use in sizing the FRF  
 

Figure 3.—(a) WebCore FRF panels with and without foam removed. (b) Typical FRF panel. (c) FRF engine casing with 
double curvature manufactured by WebCore Technologies. 

(a) (b) (c) 
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TABLE 1.—FRF CORE MATERIAL PROPERTIES (REFS. 1 AND 7) 
  Density 

(pcf) 
Et 

(ksi) 
Ec

(ksi) 
Gw
(ksi) 

Gl
(ksi) 

Ftu 
(psi) 

Fsuw 
(psi) 

Fsul 
(psi) 

Fcus 
(psi) 

WebCore A 4.1 26.1 26.1 1.88 44.7 272 89 234 352 
WebCore B 7.3 128 128 10 161 595 89 1266 595 
WebCore Light Bi 7.5 68.0 68.0 9 35 1641 145 473 1641 
TYCOR G6 Bi 6.8 50 50 10 14 140 180 180 70 
TYCOR 126-C06 11.7 314 314 147 212 710 764 538 2000 
TYCOR 67-C18 6.9 70.4 70.4 27.4 40.8 355 240 389 362 
TYCOR 92-C2 4.4 38.7 38.7 1.91 84.1 410 62 314 542 
TYCOR 92-C6 5.4 156 156 2.24 77.1 687 120 667 1013 
TYCOR 94-C1 3.9 23.1 23.1 1.90 37.5 305 60 231 355 

 
 
concept using the effective core material approach. The candidate effective core material properties are given in 
Table 1. The benefit of utilizing this approach is that standard core designs with reasonably well known properties 
are employed. The disadvantage of this approach is that the panel is not being fully optimized for the load state as 
the web spacing, web material, and foam material cannot be optimized. Rather, the details of the core geometry have 
already been captured within the core’s effective properties. 

The second approach employed for sizing the FRF core panels involves treating the panel as a blade stiffened 
sandwich panel in HyperSizer. This enables HyperSizer to optimize not only the panel height, facesheet thickness, 
and facesheet materials (as in the effective core material property approach), but also the web spacing, web 
thickness, and web material. The foam and its effect on the panel performance, however, are not captured in this 
approach. To account for the stabilizing effect of the foam on the local buckling of the webs and the facesheets, the 
crippling failure modes typically considered for a blade stiffened sandwich panel were disabled. Furthermore, a 
positive factor of 3 was placed on the local buckling failure modes. This essentially allows the webs and facesheets 
to attain positive margins for loads up to three times their buckling loads calculated within HyperSizer. This factor 
of 3 is arbitrary, but was chosen through trial and error so that a reasonable web spacing would be chosen by 
HyperSizer in several cases. It is noted that one particular design of a FRF panel based on this approach was 
confirmed to provide positive local buckling margins in a detailed Abaqus shell Eigenvalue model (Ref. 7). The 
final step of the blade stiffened sandwich approach involves adding the mass of the foam to the sized blade stiffened 
sandwich panel mass after completing the sizing. 

IV. Results and Discussion 
A. Payload Shroud 

The NASTRAN FEM employed for the payload shroud is shown in Figure 4. The model consists of three major 
panel components, the upper nose, lower nose, and barrel, which are all sized with the FRF panel concept. The 
remaining panels represent doors and penetrations and are not sized. These panels are assigned a thin, weak design 
such that they carry minimal load, but still enable the shroud to be closed. Beam components in the model consist of 
three ring frames at the bottom of each major panel, frames around the cutouts and doors, and four separation rails 
that divide the shroud into four petals. The ring frames are sized as composite I-beams, while the penetration frames 
are sized as composite J-beams. The separation rails are not sized, but rather are assigned a fixed aluminum alloy 
J-beam design with a unit mass of 2.34 kg/m. This design is intended to be relatively weak such that the rails do not 
carry a large amount of load. The actual design of the separation rails requires consideration of the details of the 
joints between the petals along with the separation procedure required as the shroud is jettisoned (see Fig. 2). It 
should be noted that the choice of the number of panel components to be used in the sizing can have a significant 
effect on the design. Three large acreage panel components are shown in Figure 4. A more detailed design would 
likely use a greater number of such components, including separate components to represent build ups around the 
cut outs. This enables HyperSizer to better optimize the structure to the local loads. In the case of the shroud, 
because the loads are relatively small, this is less of an issue than it is in other Ares V structures. 
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Figure 4.—Ares V payload shroud FEM. 
 
 
 

Six load cases are considered in the payload shroud design, illustrated in Figure 5. The Max G load case involves 
pure axial acceleration, and is paired with a constant thermal load. The remaining five load cases are associated with 
the maximum dynamic pressure load (Max Q) during ascent. The pure Max Q load case involves a maximum 
dynamic pressure, along with an additional pressure to account for off-nominal conditions. These dynamic pressures 
are distributed to the external surface of the shroud based on CFD simulations of the ascent. In addition, a negative 
internal pressure is superimposed on the entire shroud to account for the worst case venting situation during ascent 
in which supersonic flow can cause a negative pressure to be pulled. Finally, an axial acceleration load is present in 
the Max Q load case. The cumulative axisymmetric pressure profile for the Max Q load case applied to the shroud is 
shown in Figure 6(a). The remaining four load cases all involve the Max Q condition (Max Q applied at an angle 
of attack), wherein the Max Q condition is applied with the vehicle at an angle of 7 from vertical. This causes an 
asymmetry of the pressure profile, as shown in Figure 6(b). To account for interaction between the cutouts and the 
asymmetric pressure profile, the pressure profile is clocked at 0, 90, 180, and 270 with respect to the cutout 
locations. The FEM is also fully constrained at the aft end. Note that the magnitudes of the loads are not currently 
releasable. 

For both the effective core property approach and the blade stiffened panel approach, effective laminate material 
properties, derived from an IM7/977-3 quasi-isotropic [0/45/90]s laminate, were used for the facesheets and webs. 
In HyperSizer, such effective laminate materials are determined from classical lamination theory for a given 
laminate based on known ply properties, and the laminate is treated as an orthotropic material. This enables the 
facesheets and webs to be sized by thickness rather than using an explicit ply-by-ply design, which is beneficial for 
performing efficient preliminary trade studies. The disadvantage is that the sized facesheets and webs are most likely 
approximate as a layup that corresponds exactly to the effective laminate thickness and ply percentages is unlikely. 
Further, the effective laminate material allowables are derived from the ply-based allowables using classical 
lamination theory, and this must also be viewed as an approximation. The effective laminate material properties 
employed for the payload shroud sizing are given in Table 2. The minimum gage assumptions employed for the 
facesheet and web thicknesses were 0.022 in. (equivalent to 4 plies), while the minimum gage assumed for the beam 
sections was 0.044 in. (equivalent to 8 plies). The thicknesses of the two facesheets were permitted to size 
independently, however, in all cases, the facesheets sized to the same thickness. An ultimate load factor of 1.4 and a 
limit load factor of 1.0 were employed, as was a panel buckling knockdown factor of 0.65. 
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Figure 5.—Ares V payload shroud load cases. 

 

                   
Figure 6.—Ares V Payload Shroud applied pressure profile for (a) Max Q load case and (b) Max Q 0 load case. 

 
TABLE 2.—PAYLOAD SHROUD EFFECTIVE LAMINATE PROPERTIES – [0/45/90]S IM7/977-3 

Temp 
(F) 

Density 
(pcf) 

Et1 
(Msi) 

Et2 
(Msi) 

t12 Ec1 
(Msi) 

Ec2 
(Msi) 

c12 G12 
(Msi) 

Ftu1 
(ksi) 

Ftu2 
(ksi) 

Fcu1 
(ksi) 

Fcu2 
(ksi) 

Fsu12 
(ksi) 

–65 98.5 8.63 8.63 0.303 8.48 8.48 0.302 3.13 57.1 57.1 57.1 57.1 30.0 
75 98.5 8.41 8.41 0.313 8.26 8.26 0.313 3.20 75.1 75.1 74.3 74.3 40.5 

220 98.5 8.21 8.21 0.326 8.06 8.06 0.325 3.09 70.6 70.6 56.7 56.7 38.5 
Et1 = 0 tensile Young’s modulus; Et2 = 90 tensile Young’s modulus; t12 = in-plane tensile Poisson ratio; Ec1 = 0 
compressive Young’s modulus; Ec2 = 90 compressive Young’s modulus; c12 = in-plane compressive Poisson ratio; G12 = in-
plane shear modulus; Ftu1 = 0 ultimate tensile stress allowable; Ftu2 = 90 ultimate tensile stress allowable; Fcu1 = 0 ultimate 
compressive stress allowable; Fcu2 = 90 ultimate compressive stress allowable; Fsu12 = ultimate in-plane shear stress 
allowable. 

(a)                                                 (b) 
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The effective core property design and the blade stiffened design were iterated with HyperFEA approximately 
15 times, wherein changes were made between some iterations to hone the variable bounds. In both cases, a well 
converged design was achieved with the margins of safety shown in Figure 7. As stated above, the negative margins 
for the separation rails and some cut out panels are expected as their components were not sized, but were rather 
provided weak designs such that they do not carry significant load. All other component margins are positive, with 
the ring frames attaining high positive margins. The fact that these ring frames sized to minimum gage, yet still have 
such high margins indicate that these ring frames are parasitic to the design from the standpoint of the structural 
capability of the shroud given the flight load cases considered. 

The summaries for the payload shroud FRF panel designs are shown in Figure 8. For the effective core property 
approach, all three panel component designs used the least dense core (see Table 1) with a thickness of 1.625 in. The 
upper nose and lower nose facesheets sized to the 4 ply minimum gage thickness, while the barrel facesheets sized 
to a 5 ply thickness. The controlling failure mechanism for the lower nose and barrel was panel buckling, while, for 
the upper nose, it was facesheet wrinkling. For the blade stiffened sandwich panel approach, all three panel 
components were controlled by panel buckling and sized to 1 in. web spacing. The sized web thicknesses were 4, 5, 
and 4 ply equivalents for the upper nose, lower nose, and barrel, respectively, while all three component facesheet 
thicknesses sized to the 4 ply minimum gage. Finally, the sized core thicknesses were 1.5, 1, and 1.25 in., 
respectively, for the upper nose, lower nose, and barrel. It is noteworthy that the upper nose sized to the thickest core 
in the case of the blade stiffened panel approach, likely due to the high pressure concentration in the max Q load 
case (see Fig. 6), whereas in the effective property approach, this was not the case. As shown in Figure 9, the max 
Q load case controls the entire payload shroud structure, aside from the separation rails. 
 
 
 

                    
 
Figure 7.—Ares V payload shroud FRF core sandwich panel design margins of safety for (a) the effective core 

property approach and (b) the blade stiffened sandwich panel approach. 
 

  
 
 
 
 
 

    (a)                                                                          (b) 
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Figure 8.—Ares V payload shroud FRF core sandwich panel design summary for (a) the effective core property 

approach and (b) the blade stiffened sandwich panel approach.  
 
 

                
 
Figure 9.—Ares V payload shroud FRF core sandwich panel design controlling load cases for (a) the effective 

core property approach and (b) the blade stiffened sandwich panel approach.  

Lower Nose:

• 41.3 mm (1 5/8”) core

• 4 ply facesheets

• Panel Buckling

Barrel:

• 41.3 mm (1 5/8”) core

• 5 ply facesheets

• Panel Buckling

Upper Nose :

• 41.3 mm (1 5/8”) core

• 4 ply facesheets

• Facesheet wrinkling

Lower Nose:

• 25.4 mm (1”) core

• 4 ply facesheets

• 5 ply webs

• 25.4 mm (1”) web spacing

• Panel Buckling

Barrel:

• 31.7 mm (1 1/4”) core

• 4 ply facesheets

• 4 ply webs

• 25.4 mm (1”) web spacing

• Panel Buckling

Upper Nose :

• 38.1 mm (1 1/2”) core

• 4 ply facesheets

• 4 ply webs

• 25.4 mm (1”) web spacing

• Panel Buckling

(a)                                                                                         (b) 

(a)                                                                           (b) 
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TABLE 3.—MASS SUMMARY FOR PAYLOAD SHROUD FRF SANDWICH PANEL DESIGN 

 
Configuration 

Added Foam Mass 
(%) 

Smeared Unit Mass (kg/m2)

FRF as Effective Properties  – 4.49 

  Nose  – 4.28 
  Barrel  – 4.72 

FRF as Blade Sandwich  25.3 3.83 
  Nose  24.3 3.81 

  Barrel  26.4 3.86 

 

 
Figure 10.—Ares V interstage FEM.  

 
The blade stiffened sandwich FRF design does not explicitly account for the foam present between the webs in 

the panels. Recall that a positive local buckling factor was employed to account for the stabilizing effect of the foam 
on the webs and facesheets. However, to assess the mass of the blade stiffened sandwich design, the mass of foam 
must be considered. Toward this end, a 2 pcf density foam was assumed and the appropriate mass added. Note that 
2 pcf corresponds to a low-density Rohacell 31 IG closed-cell polymer foam (Ref. 8). The payload shroud panel 
mass summary is given in Table 3. Note that the separation rails and cut out panels are excluded from the smeared 
unit masses given, but all other structural components are included. As shown, the blade stiffened panel approach 
provided a total mass approximately 15% lighter than the effective property approach. This is mainly due to the 
decreased core thickness sized by the blade stiffened sandwich approach, which is likely allowable due to the fact 
that in this approach, the contribution of the webs to the panel stiffness is accounted for, whereas, in the effective 
core property approach, this contribution is neglected. This added stiffness allows the core to be thinner while still 
providing sufficient panel buckling resistance. 

B. Interstage 
The interstage is located near the middle of the Ares V stack (Fig. 2), and is thus more highly loaded than the 

shroud. The FEM employed for preliminary sizing of the interstage is simply a cylindrical shell, as shown in 
Figure 10, with no beam elements. The cylinder was treated as a single panel component for sizing within 
HyperSizer. A single load case, corresponding to the max Q condition, was considered. This involves an axial load, 
a shear load, and a bending moment, along with an external pressure. The magnitudes of these loads are not 
currently releasable. Care must be taken when applying loads such as these, that are essentially calculated based on 
modeling the vehicle stack as a beam, to a shell model so that the correct shear distribution is applied to the edge. 
Simply tying all of the nodes at one end of the cylinder to a central point where the loads are applied may 
(depending on the FE code) evenly distribute the shear load along the edge of the shell, which is not correct (Ref. 9). 
The end of the cylinder opposite the end where the loads are applied is constrained axially and in torsion, but free to 
translate radially. Ultimate and limit load factors of 1.4 and 1.0, respectively, were employed, along with a panel 
buckling knockdown factor of 0.65. 
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As in the sizing of the payload shroud, both the effective core property approach and the blade stiffened 
sandwich panel approach were used. Further, effective laminate material properties were used to represent the 
facesheets and webs in sizing the FRF interstage. However, a different material system, namely IM7/8552 with open 
hole compression allowables, was employed. As in the case of the shroud IM7/977-3 material, the effective laminate 
properties were determined from ply level properties using classical lamination theory within HyperSizer. Due to 
expected elevated temperatures during flight, the material properties at 120 F were used. An array of effective 
laminates with different percentages of 0/45/90 plies was considered. In all cases a [10% 45, 75% 0, 15% 90] 
laminate was chosen for the facesheet, as this was the axially stiffest effective laminate considered. The properties of 
this effective laminate are given in Table 4. In the case of the blade stiffened sandwich design approach, effective 
laminates with a maximum of 45% 0 plies were considered. Three such effective laminates were chosen among the 
various panel designs described below, the properties of which are given in Table 5. A minimum gage thickness 
equivalent to 8 plies (0.044 in.) was used for the facesheets, while a minimum gage thickness equivalent to 4 plies 
(0.022 in.) was used for the webs. The thicknesses of the two panel facesheets were required to be the same. In the 
effective core material sizing approach, the same core material properties, given in Table 1, were used. 
 

TABLE 4.—ARES V FRF INTERSTAGE FACESHEET EFFECTIVE IM7/8552 
OPEN HOLE COMPRESSION LAMINATE PROPERTIES AT 120 F 

Ply % 
45, 0, 90 

Density 
(pcf) 

Et1 
(Msi) 

Et2 
(Msi) 

t12 Ec1 
(Msi) 

Ec2 
(Msi) 

c12 G12 
(Msi) 

Ftu1 
(ksi) 

Ftu2 
(ksi) 

Fcu1 
(ksi) 

Fcu2 
(ksi) 

Fsu12 
(ksi) 

10, 75, 15 98.5 16.8 5.02 0.194 16.7 5.02 0.194 1.16 101 31.8 82.4 24.7 8.50 
Et1 = 0 tensile Young’s modulus; Et2 = 90 tensile Young’s modulus; t12 = in-plane tensile Poisson ratio; Ec1 = 0 
compressive Young’s modulus; Ec2 = 90 compressive Young’s modulus; c12 = in-plane compressive Poisson ratio; G12 = in-
plane shear modulus; Ftu1 = 0 ultimate tensile stress allowable; Ftu2 = 90 ultimate tensile stress allowable; Fcu1 = 0 ultimate 
compressive stress allowable; Fcu2 = 90 ultimate compressive stress allowable; Fsu12 = ultimate in-plane shear stress 
allowable. 
 

TABLE 5.—ARES V FRF INTERSTAGE WEB EFFECTIVE IM7/8552 
OPEN HOLE COMPRESSION LAMINATE PROPERTIES AT 120 F 

Ply % 
45, 0, 90 

Density 
(pcf) 

Et1 
(Msi) 

Et2 
(Msi) 

t12 Ec1 
(Msi) 

Ec2 
(Msi) 

c12 G12 
(Msi) 

Ftu1 
(ksi) 

Ftu2 
(ksi) 

Fcu1 
(ksi) 

Fcu2 
(ksi) 

Fsu12 
(ksi) 

40, 45, 15 98.5 11.6 6.13 0.368 11.6 6.12 0.368 2.60 63.0 37.0 56.1 30.2 19.1 
50, 35, 15 98.5 9.86 6.34 0.410 9.86 6.34 0.410 3.08 52.0 36.7 46.8 31.3 22.6 

50, 25, 25 98.5 8.15 8.15 0.321 8.15 8.15 0.321 3.08 45.5 45.5 40.1 40.1 22.3 
Et1 = 0 tensile Young’s modulus; Et2 = 90 tensile Young’s modulus; t12 = in-plane tensile Poisson ratio; Ec1 = 0 
compressive Young’s modulus; Ec2 = 90 compressive Young’s modulus; c12 = in-plane compressive Poisson ratio; G12 = in-
plane shear modulus; Ftu1 = 0 ultimate tensile stress allowable; Ftu2 = 90 ultimate tensile stress allowable; Fcu1 = 0 ultimate 
compressive stress allowable; Fcu2 = 90 ultimate compressive stress allowable; Fsu12 = ultimate in-plane shear stress 
allowable. 
 

Although, as mentioned above, the FEM contains no ring frames, the effect of ring frame spacing on the FRF 
panel weights for the interstage were investigated by varying the panel axial buckling length within HyperSizer. 
This panel buckling length is used in the panel buckling analysis within HyperSizer to determine the allowable 
buckling load. It is typically taken as the distance between ring frames, which assumes that the ring frames provide 
sufficient constraint such that the panel buckling modes are restricted to within the bays. The axial buckling length 
was varied between 15 and 90 in., while, in the circumferential direction, full cylinder buckling was assumed. 

Figure 11 shows a plot of the sized interstage panel areal weight versus ring frame spacing for the two employed 
sizing approaches. Details of the designs for 30, 60, and 90 in. ring frame spacings are given in Table 6. As 
expected, for both sizing approaches, as the ring frame spacing (and thus buckling length) increases, the panel height 
becomes greater to prevent panel buckling, and the panel areal weight increases. For the lower ring frame spacings, 
the weights of the FRF panels sized with the effective core property approach and the blade stiffened sandwich 
panel approach are reasonably close. However, as the ring frame spacing increases, the weight associated with the 
effective core property approach becomes significantly lower than that associated with the blade stiffened sandwich 
approach. This higher weight of the blade stiffened sandwich design is due to the higher web weight caused by the 
taller and thicker webs. The thicker webs are required to prevent local buckling of the webs as they become taller in 
concert with the panel height. In the effective core property sizing approach, since the webs are not explicitly 
modeled, and thus local buckling of the webs is not explicitly considered, this effect is not considered in the sizing. 
This demonstrates the need for a true HyperSizer capability for FRF panels, that considers the local buckling of the 
webs and facesheet with the added support of the foam. 
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Figure 11.—Ares V sized interstage panel areal weight versus ring frame spacing for 
the effective core property and blade stiffened sandwich sizing approaches.  

 

TABLE 6.—DESIGN DETAILS OF THE FRF INTERSTAGE PANELS AS A FUNCTION OF RING FRAME SPACING 

 

C. Core Intertank 
As shown in Figure 2, the core intertank is located aft of the interstage, and is consequently more highly loaded 

for this reason alone. In addition, the two SRBs are attached to the core intertank, which introduce a great deal of 
additional load, and the current design includes a thrust beam spanning the intertank barrel. The Ares V core 
intertank FEM is shown in Figure 12. As shown, there are a number of panel components, and build-up regions that 
have been included around the cutouts. The structural concepts considered in the sizing are shown in Figure 13. The 
SRBs and cut-out panels were not sized. The large thrust beam (which is actually composed of shell elements in the 
FEM) was sized as solid IM7/8552 (with open-hole compression allowables), while the beam components were 
sized as IM7/8552 C beams. The core intertank barrel was sized as FRF core sandwich panels, using only the 
effective core property approach. The effective core properties given in Table 1 were employed for the core, while a 
number of effective laminates, whose properties are given in Table 7, were considered for the facesheets (as well as 
the beam solid laminates). Note that a uniaxial laminate was considered as a candidate material in this case. As in 
the interstage sizing, the thicknesses of the two panel facesheets were required to be the same, and the effective 
laminate properties were determined within HyperSizer using classical lamination theory. 
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Figure 12.—Ares V core intertank FEM.  

 
 

 
 

Figure 13.—Ares V core intertank structural concepts.  
 

TABLE 7.—ARES V FRF CORE INTERTANK FACESHEET EFFECTIVE IM7/8552 
OPEN HOLE COMPRESSION LAMINATE PROPERTIES AT 70 F 

Ply % 
45, 0, 90 

Density 
(pcf) 

Et1 
(Msi) 

Et2 
(Msi) 

t12 Ec1 
(Msi) 

Ec2 
(Msi) 

c12 G12 
(Msi) 

Ftu1 
(ksi) 

Ftu2 
(ksi) 

Fcu1 
(ksi) 

Fcu2 
(ksi) 

Fsu12 
(ksi) 

0, 100, 0 98.5 21.2 1.82 0.311 21.2 1.82 0.310 0.73 138 11.8 103 17.1 7.1 
20, 70, 10 98.5 16.0 4.64 0.319 16.0 4.64 0.319 1.69 80.3 28.0 67.3 21.7 10.5 
50, 25, 25 98.5 8.26 8.26 0.321 8.26 8.26 0.321 3.12 41.3 41.3 34.7 34.7 19.5 

80, 10, 10 98.5 5.29 5.29 0.566 5.29 5.29 0.566 4.56 21.9 21.9 19.6 19.6 28.4 
Et1 = 0 tensile Young’s modulus; Et2 = 90 tensile Young’s modulus; t12 = in-plane tensile Poisson ratio; Ec1 = 0 
compressive Young’s modulus; Ec2 = 90º compressive Young’s modulus; c12 = in-plane compressive Poisson ratio; G12 = in-
plane shear modulus; Ftu1 = 0 ultimate tensile stress allowable; Ftu2 = 90 ultimate tensile stress allowable; Fcu1 = 0 ultimate 
compressive stress allowable; Fcu2 = 90 ultimate compressive stress allowable; Fsu12 = ultimate in-plane shear stress 
allowable. 
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Four load cases were developed based on the current Ares V project maximum launch loads at the stations of the 
stack representing the top and bottom of the intertank barrel, combined with the SRB loads. In all four load cases, 
the SRB loads are applied to the center surface of the SRB as modeled in the FEM (see Fig. 12). For loading applied 
to the top of the core intertank, the bottom of the core intertank was fixed. Maximum and minimum axial 
compressive loads were applied to the top edge of the barrel, with linear variation between these limits around the 
perimeter of the edge. Two load cases resulted from these top-edge loads by applying the maximum compressive 
load above the purge umbilical cut-out and the minimum compressive load at 180 from this location, and then 
interchanging these locations for the second load case. Similarly, for loading at the bottom of the core intertank, the 
top-edge of the barrel is held fixed. A maximum compressive axial load and a minimum axial compressive load 
were applied to the bottom of the barrel, with a 180 rotation resulting in the two additional load cases. As in the 
case of the shroud and interstage, the magnitudes of the intertank loads are not currently releasable. Load factors of 
1.4 and 1.0 were employed for ultimate and limit, respectively, and a panel buckling knockdown factor of 0.65 was 
used. 

HyperFEA was used to iterate between the HyperSizer sizing and the NASTRAN loads FEM. A converged, 
closed design was achieved after approximately 45 iterations, wherein a multitude of changes in the sizing 
parameters were made between iterations. The result, as shown in Figure 14, yielded all positive margins, aside from 
the cut-out panels, which, as in the payload shroud design, were purposely assigned a fixed weak design such that 
they do not carry significant load. The controlling load case for the barrel panel components is shown in Figure 15. 
As expected, the load cases labeled “+Z”, wherein the maximum compressive loads are applied above or below the 
umbilical purge cut-out, are controlling on the side of the barrel that contains the umbilical purge cut-out. Likewise, 
the opposite side is controlled by the load cases labeled “–Z”. The unit weights of the panels composing the core 
intertank barrel are shown in Figure 16. Clearly, the build-ups around the cut-outs are becoming quite heavy. The 
reason for this can be seen in Figures 17 and 18, which show the sized core material and panel thickness. In the 
build-up regions around the cut-outs and near the thrust beam, a heavy core material was required, as was a panel 
thickness of up to 0.1524 m (6 in.). 

 

 
 

Figure 14.—Ares V core intertank FRF design margins of safety. 
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Figure 15.—Ares V core intertank FRF barrel design panel controlling load case.  
 
 

 
 

Figure 16.—Ares V core intertank FRF barrel design panel unit weights (kg/m2).  
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Figure 17.—Ares V core intertank FRF barrel design core material.  
 
 

 
 

Figure 18.—Ares V core intertank FRF barrel design panel thickness (m).  
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Figure 19 shows the facesheet materials selected for the core intertank barrel. Due to the high axial compressive 
loads, the barrel has been mainly sized with the unidirectional effective laminate facesheets. Likewise, the thrust 
beam is sized completely with the unidirectional effective laminate material (not shown). The thrust beam laminate 
thicknesses are shown in Figure 20. The thicknesses of the thrust beam components (which are shell elements) range 
from 0.1 to 0.8 in. 

Figure 21 shows an additional structural component of the core intertank that appears to be problematic. This is 
one of the thrust adapters that connects the thrust beam and SRBs to the barrel. The portion of the thrust adapter 
shown in red required 0.141 m (5.6 in.) solid laminate due to the high loads experienced by this panel. Table 8 
provides a mass summary of the core intertank FRF design. The structure depicted in Figure 21 consists of the thrust 
adapter and thrust adapter – on barrel, each of which have a mass greater than that of the entire thrust beam. Clearly, 
this region of the structure is a strong candidate for significant redesign. 

 
 
 

 

 
 

Figure 19.—Ares V core intertank FRF barrel design facesheet materials. 
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Figure 20.—Ares V FRF core intertank design thrust beam laminate thicknesses (m). 
 
 
 

 
 

Figure 21.—Ares V FRF core intertank design thrust adapter laminate thicknesses (m). 
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TABLE 8.—MASS SUMMARY FOR ARES V 
CORE INTERTANK FRF DESIGN 

 

V. Conclusion 
A preliminary design study for the Ares V payload shroud, interstage, and core intertank has been presented, 

where a novel fiber reinforced foam (FRF) sandwich panel concept has been employed. This lightweight panel 
concept is essentially a hybrid between a foam sandwich panel and a blade stiffened sandwich panel, where integral 
webs are present within the panel core, separated by foam. Two approaches for sizing the FRF panels, using vendor-
supplied effective core properties and treating the panel as a blade stiffened sandwich panel, were used for the 
shroud and the interstage. The design of the more complex core intertank was performed using only the effective 
core property approach. It was found that both approaches are capable of achieving closed preliminary designs, and 
for lower panel heights (< ~1.5 in.) the approaches produce design masses that are in reasonable agreement. Under 
sufficient load, as the panels become thicker, as they will when compressive loads or the panel buckling length 
increase, local buckling of the webs becomes a more critical failure mode. This increases the mass of the FRF panel 
when using the blade stiffened sandwich design approach, but does not affect the design in the case of the effective 
core property approach as local buckling of the webs is not explicitly considered. As such, the blade stiffened panel 
approach tends to yield heavier panel designs as the panel thickness increases. Conversely, in the case of the shroud 
design, which is lightly loaded compared to the interstage, local web buckling does not become an issue, and the 
blade stiffened panel approach resulted in a lower mass design. This illustrates that using effective properties under 
conditions that deviate significantly from the conditions under which the effective properties were determined has 
the potential to yield nonconservative designs. 
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